Math 25
Fall 2017
Lecture 13

Operations with Functions
(1) Addition $(f+g)(x)=f(x)+g(x)$
(2) Subtraction $(f-g)(x)=f(x)-g(x)$
(3) Multiplication $(f \cdot g)(x)=f(x) \cdot g(x)$
(4) Division $(f / g)(x)=\frac{f(x)}{g(x)} ; g(x) \neq 0$

$$
\begin{aligned}
& f(x)=4 x-3, g(x)=x+4 \\
& \begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =4 x-3+x+4=5 x+1 \\
(f-g)(x) & =f(x)-g(x) \\
& =4 x-3-(x+4)=4 x-3-x-4 \\
& =3 x-7 \\
(f \cdot g)(x) & =f(x) \cdot g(x) 54 x^{2}+16 x-3 x-12 \\
& =(4 x-3) \cdot(x+4)=4 x^{2}+13 x-12
\end{aligned}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(f / g)(x) & =\frac{f(x)}{g(x)} ; g(x) \neq 0 \\
& =\frac{4 x-3}{x+4} ;
\end{array} \quad \begin{array}{c}
x+4 \neq 0 \\
x \neq-4
\end{array}\right)
$$

$x \neq-4$ Domain:
All reals except

$$
f(x)=x^{2}+1, \quad g(x)=x-2
$$

find $f+g, f-g, f \cdot g$, and $\frac{f}{g}$.

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =x^{2}+1+x-2=x^{2}+x-1
\end{aligned}
$$

$$
\begin{aligned}
&(f-g)(x)=f(x)-g(x) \\
&=x^{2}+1-(x-2) \\
&=x^{2}+1-x+2=x^{2}-x+3 \\
&(f \cdot g)(x)=f(x) \cdot g(x) \\
&=\left(x^{2}+1\right)(x-2)=x^{3}-2 x^{2}+x-2 \\
&(f / g)(x)=\frac{f(x)}{g(x)} ; g(x) \neq 0 \\
&=\frac{x^{2}+1}{x-2} ; \quad x-2 \neq 0 \quad \begin{array}{ll}
x \neq 2 & \text { Domain Reals except } \\
\text { (}
\end{array} \\
&
\end{aligned}
$$

Composition Operation 0

$$
(f \circ g)(x) \quad " f \text { composition } g \text { of } x "
$$

$$
=f(g(x))
$$

$$
\text { ex: } f(x)=3 x+5 \quad, g(x)=2 x-3
$$

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =3 g(x)+5 \\
& =3(2 x-3)+5=6 x-9+5 \\
(g \circ f)(x)=g(f(x)) & =2 f(x)-3=6 x-4 \\
& =2(3 x+5)-3=6 x+10-3=6 x+7
\end{aligned}
$$

$$
f(x)=2 x-4 \quad g(x)=\frac{1}{2} x+2
$$

find $(f \circ g)(x)=f(g(x))$

$$
\begin{aligned}
& =2 g(x)-4 \\
& =2\left(\frac{1}{2} x+2\right)-4=2 \cdot \frac{1}{2} x+2 \cdot 2-4
\end{aligned}
$$

$$
=x
$$

$$
\begin{aligned}
\text { Find }(g \circ f)(x) & =g(f(x)) \\
& =\frac{1}{2} f(x)+2 \\
& =\frac{1}{2}(2 x-4)+2=\frac{1}{2} \cdot 2 x-\frac{1}{2} \cdot 4+2 \\
& =x
\end{aligned}
$$

$$
=x
$$

$$
\begin{aligned}
& f(x)=\sqrt{x+3} \quad, \quad g(x)=x^{2}-3 \\
& x \geq-3 \\
& \text { find }(f \circ g)(x) \quad \dot{E}(g \circ f)(x) \\
& (f \circ g)(x)=f(g(x))=\sqrt{g(x)+3} \\
& =\sqrt{x^{2}-3+3}=\sqrt{x^{2}}=\frac{\square}{x} \\
& (g \circ f)(x)=g(f(x))=(f(x))^{2}-3 \\
& =(\sqrt{x+3})^{2}-3=x+3-3
\end{aligned}
$$

If $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$,
then $f(x) \quad \dot{\varepsilon}, g(x)$ are inverse of each other.

$$
\left(f \circ f^{-1}(x)=x \quad \dot{\varepsilon} \quad\left(f^{-1} \circ f\right)(x)=x\right.
$$

find $f^{-1}(x)$ of $f(x)=\frac{x-2}{x}, x \neq 0$

$$
y=\frac{x-2}{x} \quad x=\frac{y-2}{y} \quad x y=y-2
$$

	Domain	Range
$f(x)$	$x y-y=-2$	$y(x-1)=-2$
$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 1) \cup$	$(1, \infty)$

$f(x)=\frac{x+4}{x-2}$, find $f^{-1}(x)$, make the table for domain $\dot{\varepsilon}$ range using interval notation.

$$
\begin{aligned}
& f(x)=\frac{x+4}{x-2}, x-2 \neq 0, x \neq 2 \\
& f \underset{x+4}{x-2} \rightarrow x y-2 x=y+4 \quad \rightarrow y=\frac{2 x+4}{x-1} \\
& y=\frac{x+4}{x-2} \\
& x y-y=4+2 x \\
& y(x-1)=2 x+4 \quad f(x)=\frac{2 x+4}{x-1} \\
& \begin{array}{l}
x=\frac{y+4}{y-2} \\
x(y-2)=y+4
\end{array} \\
& \begin{array}{l|c|c}
& D & R^{x \neq 1} \\
\hline f(x) & (-\infty, 2) \cup & (2, \infty) \\
\hline f^{-1}(x) & (-\infty, 1) U_{(1, \infty)} \\
\hline
\end{array}
\end{aligned}
$$

Solve

1) $81^{2 x-1}=27^{3 x}$
2) $3^{x-4}=4$

Notice: $81=3^{4}, 27=3^{3}$
Take log of both

$$
\begin{aligned}
\left(3^{4}\right)^{2 x-1} & =\left(3^{3}\right)^{3 x} \\
4(2 x-1) & =3^{3(3 x)} \\
3^{4(2 x-1)} & =3(3 x) \\
8 x-4 & =9 x \\
-4 & =x \quad\{-4\}
\end{aligned}
$$

Solve

$$
\begin{aligned}
\text { 1) } \log _{3}(7-5 x)=2 \\
3^{2}=7-5 x \\
9=7-5 x \\
2=-5 x \\
\frac{-2}{5}=x \\
\left\{\frac{-2}{5}\right\}
\end{aligned}\left\{\begin{array} { l }
{ \operatorname { l o g } _ { 4 } (3 x + 1) - \operatorname { l o g } _ { 4 } (x - 2) = 2 } \\
{ \operatorname { l o g } _ { 4 } \frac { 3 x + 1 } { x - 2 } = 2 } \\
{ 4 = \frac { 3 x + 1 } { x - 2 } } \\
{ 1 6 (x - 2) = 3 x + 1 } \\
{ 1 6 x - 3 2 = 3 x + 1 } \\
{ 1 3 x = 3 3 }
\end{array} \quad \left\{\begin{array}{l}
x=\frac{33}{13}
\end{array}\right.\right.
$$

find $f^{-1}(x)$ for $f(x)=\log _{3}(x-2)-1$
use table to express domain and range in interval notation.

$$
\begin{aligned}
f(x) & =\log _{3}(x-2)-1 \\
y & =\log _{3}(x-2)-1 \\
x & =\log _{3}(y-2)-1 \\
x & +1=\log _{3}(y-2)
\end{aligned}
$$

	D	R
$f(x)$	$(2, \infty)$	$(-\infty, \infty)$
$f^{-1}(x)$	$(-\infty, \infty)$	$(2, \infty)$

Express as a single log:

$$
\begin{aligned}
& \log _{2} 7-2 \log _{2} x-\frac{1}{3} \log _{2} y+\frac{1}{2} \log _{2} z \\
= & \log _{2} 7-\log _{2} x^{2}-\log _{2}^{1 / 3}+\log _{2} z^{1 / 2}=\log _{2} \frac{7 \sqrt{z}}{x^{23} \sqrt{y}}
\end{aligned}
$$

Solve: $\underbrace{\log (3 x+5)+\log (x-4)}=\log \left(2 x^{2}-30\right)$

$$
\left.\begin{array}{l}
\log _{10}^{(3 x+5)(x-4)}=\log _{10}^{\left(2 x^{2}-30\right)} \\
(3 x+5)(x-4)=2 x^{2}-30 \\
3 x^{2}-12 x+5 x-20=2 x^{2}-30
\end{array}\right)\left[\begin{array}{l}
x^{2}-7 x+10=0 \\
(x-2)(x-5)=0 \\
x^{\circ}=2 \quad \Delta x=5
\end{array}\right.
$$

Check $x=2$

$$
\begin{aligned}
& \text { Check } x=2 \\
& \log (2 \cdot 3+5)+\log (2-4-\log (-2) \quad \text { stop }
\end{aligned}
$$

Check $x=5$

$$
\begin{aligned}
& \log (3.5+5)+\log (5-4)=\log \left(2.5^{2}-30\right) \\
& \log 20+\log 1^{10}=\log 20 \\
& \log 20=\log 20 \checkmark \quad\{5\}
\end{aligned}
$$

Consider $\quad 77,68,59,50, \ldots a_{1}=77$
(1) find

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \quad d=-9 \\
& =77+(n-1)(-9) \\
& =77-9 n+9=86-9 n
\end{aligned}
$$

(2) find $a_{80}=86-9(80)=86-720=-634$
(3) find

$$
\begin{aligned}
S_{80} & =\frac{80}{2}\left(a_{1}+a_{80}\right) \\
& =40(77-634)=-22280
\end{aligned}
$$

Consider $7,21,63,189, \ldots a_{1}=7$
find $r=3$

1) $a_{n}=a_{1} r^{n-1}=7 \cdot 3^{n-1}$
2) $a_{10}=7 \cdot 3^{10-1}$
3) $S_{10}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
=\square
$$

$$
S_{10}=\frac{7\left(1-3^{10}\right)^{1-r}}{1-3}=\square
$$

$$
\begin{aligned}
& \text { Find the Sum } \\
& \begin{array}{l}
\text { 20 Infinite } \\
a_{1}=20 \\
r=\frac{8}{20}=\frac{2}{5}
\end{array} \quad S_{\infty}=\frac{32}{25}+\cdots=\frac{20}{1-2 / 5}=\frac{20}{\frac{3}{5}} \\
& 100 / 3
\end{aligned}
$$

find the term of $(\underbrace{3 x}_{A}-\underbrace{-4 y}_{B})^{12}=100 / 3$

$$
\begin{aligned}
& (A+B)^{12} \\
& \binom{12}{4} A^{8} B^{4} \quad \begin{array}{c}
\text { the fifth } \\
\text { term. }
\end{array} B^{4} \\
& 495(3 x)^{8}(-4 y)^{4}=\underbrace{495 \cdot(3)^{8}(-4)^{4} x^{8}}_{\text {compute that }} y^{4}
\end{aligned}
$$

Use mathematical induction to prove

$$
2+8+14+\cdots+(6 n-4)=n(3 n-1)
$$

Does it work for $n=1$?

$$
\begin{array}{rlr}
a_{n}=6 n-4 & 1(3 \cdot 1-1) \\
n=1 \quad a_{1}=6(1)-4 & 1(3-1) \\
& =2 \checkmark & 1 \cdot 2=2
\end{array}
$$

How about 2?

$$
\begin{array}{ll}
\text { How about 2? } \\
\left.\begin{array}{cl}
a_{2}=6 \cdot 2-4 & 2+8 \\
=8 & 10
\end{array}\right)=2 \cdot 5
\end{array}
$$

Let's assume it works for $n=k$, then show it works for $k+1$.

$$
2+8+14+\cdots+(6 k-4)=k(3 k-1)
$$

Add the next term of the LHS to both sides.

$$
\underbrace{2+8+14+\cdots+(6 k-4)+(6 k-4+6)}=k(3 k-1)+(6 k-4+6)
$$

How many terms?

$$
k+1 \text { terms }
$$

$$
\begin{aligned}
= & =k(3 k-1)+(6 k+2) \\
= & 3 k^{2}-k+6 k+2 \\
& =3 k^{2}+5 k+2 \\
& =(k+1)(3 k+2) \\
& =(k+1)(3 k+3-1) \\
& =(k+1)(3(k+1)-1)
\end{aligned}
$$

Use mathematical induction to Prove

$$
\begin{aligned}
& 4^{2}+9^{2}+14+\cdots+(5 n-1)=\frac{n}{2}(5 n+3) \\
& n=1 \\
& \begin{array}{ll}
a_{n}=5 n-1 & a_{1}=5(1)-1 \\
n=2 & =4 \checkmark \\
a_{2}=5(2)-1 & 4+9=\frac{2}{2}(5 \cdot 2+3) \\
=9 & 13=13
\end{array}
\end{aligned}
$$

Assume it works for $n=k$, then check to see whether or not it holds true for

$$
n=k+1
$$

$$
4+9+14+\cdots+(5 k-1)=\frac{k}{2}(5 k+3)
$$

Add the next term

$$
\begin{aligned}
& 4+9+14+\cdots+(5 k-1)+(5 k-1+5)=\frac{k}{2}(5 k+3)+ \\
&(5 k-1+5) \\
&=\frac{k}{2}(5 k+3)+\frac{2}{2}(5 k+4)=\frac{k(5 k+3)+2(5 k+4)}{2} \\
&=\frac{5 k^{2}+3 k+10 k+8}{2}=\frac{5 k^{2}+13 k+8}{2}=\frac{(k+1)(5 k+8)}{2} \\
&=\frac{k+1}{2}(5 k+8) \\
&=\frac{k+1}{2}(5(k+1)+3)
\end{aligned}
$$

Use mathematical induction to prove $7^{n}-3$ is divisible by 2 . has a factor of 2 .

$$
\begin{aligned}
& n=1 \rightarrow 7^{1}-3=7-3=4=2 \cdot 2 \\
& n=2 \rightarrow 7^{2}-3=49-3=46=23 \cdot 2 \mathrm{~V}
\end{aligned}
$$

Assume it works for $n=k$

$$
\Rightarrow 7^{k}-3=2 \cdot F \quad 7^{k}=2 \cdot F+3
$$

Now we want to show that $7^{k+1}-3$ has a factor of 2 .

$$
\begin{aligned}
& 7^{k+1}-3=7 \cdot 7^{k}-3=7(2 \cdot F+3)-3 \\
&=7 \cdot 2 F+7 \cdot 3-3 \\
&=14 F+18 \\
& \text { has a factor of } \\
& 2 .=2(7 F+9)
\end{aligned}
$$

Use M.I. to prove that $5^{n}-3$ has a factor of 2 .

$$
\begin{aligned}
& n=1 \rightarrow 5^{1}-3=5-3=2=1 \cdot 2 \\
& n=2 \rightarrow 5^{2}-3=25-3=22=11 \cdot 2
\end{aligned}
$$

Assume it works for $n=k$

$$
5^{k}-3=F \cdot 2
$$

what about $5^{k+1}-3$?

$$
\begin{aligned}
5^{k+1}-3=5 \cdot 5^{k}-3 & =5(2 F+3)-3 \\
& =5 \cdot 2 F+15-3 \\
& =10 F+12=(5 F+6) \cdot 2
\end{aligned}
$$

use M.I. to prove that $5 n<3^{n}$ for $n \geq 3$
Does it work for $n=3$? $\quad 5.3<3^{3}$
what about $n=4$?

$$
15<27
$$

Assume it works for $n=k$

$$
5 k<3^{k}
$$

we need to show $5(k+1)<3^{k+1}$

$$
\begin{aligned}
5(k+1)=5 k+5 & <5 k+10 k \\
& =15 k=3 \cdot 5 k
\end{aligned}
$$

So $5(k+1)<3^{k+1}$

Use M.I. to prove that $3 n<2^{n}$ for $n \geq 4$.
Does it work for $n=4$? $3.4<2^{4}$ $12<16$
Assume it works for $n=k$
Now, we need tc show it works for $n=k+1$

$$
\begin{gathered}
3(k+1)=3 k+3<3 k+3 k=6 k=2(3 k)<2 \cdot 2^{k} \\
3(k+1)<2^{k+1}=2^{k+1}
\end{gathered}
$$

Next week
Exam III

Review Quizzes $\}$
Exam 1 غ̇ 2
Lecture from 8:00 to $10: 00$
Look for new weekly Quiz later tonight or Sunday morning

Quadratic Functions: $a \neq 0$

$$
\left.f(x)=a(x-h)^{2}+k\right\} f(x)=a x^{2}+b x+c
$$

$$
f(x)=(x-3)^{2}+2
$$

$a=1, \quad h=3, \quad k=2 \quad$ opens upward
A.O.S. $x=h \quad x=3$
Y-Int. $(0,11)$
x-Int (Always graph first)
None
D: $(-\infty, \infty)$

$R:[2, \infty)$

Graph $f(x)=\frac{-1}{2}(x+4)^{2}+8$

$$
a=\frac{-1}{2}, \quad h=-4 \quad k=8
$$

$$
\text { A.O.S. } \quad x=-4
$$

Y-Int $(0,0)$

x-Int (Always graph first)
$(0,0),(-8,0)$
$D:(-\infty, \infty)$
$R:(-\infty, 8]$

find x-Ants $y=0 \rightarrow f(x)=0$

$$
\begin{aligned}
& \begin{array}{l}
\text { Solve } \\
\begin{array}{l}
\frac{-1}{2}(x+4)^{2}+8 \\
\frac{-1}{2}(x+4)^{2}=-8 \\
\text { multiply by }-2
\end{array} \\
(-8,0) \\
(0,0)
\end{array} \quad \begin{array}{l}
(x+4)^{2}=16 \\
\text { Squave-root method } \\
x+4= \pm \sqrt{16} \\
x+4= \pm 4 \\
x=-4 \pm 4 \\
x=-4-4 \\
x=-8
\end{array} \quad x=-4+4 \\
& x=0
\end{aligned}
$$

$$
\begin{array}{lll}
f(x)= & x^{2}-4 x & +4 \\
a=1 & b=-4 & c=4 \\
a>0 & \quad & h=\frac{-b}{2 a}=\frac{-(-4)}{2(1)}=\frac{4}{2}=2 \\
& (2,0) & k=f(h)=f(2)=2^{2}-4(2)+4=0
\end{array}
$$

Graph $f(x)=-x^{2}+2 x-4$

$$
a=-1 \quad b=2 \quad c=-4
$$

$$
\infty
$$

$$
\begin{aligned}
& h=\frac{-b}{2 a}=\frac{-2}{2(-1)}=1 \quad \Rightarrow \text { vertex } \\
& k=f(1)=-1+2-4=-3 \quad(1,-3)
\end{aligned}
$$

A.0.S. $x=1$

$$
y \text {-Int }(0,-4)
$$

x-Inks None

$$
\begin{aligned}
& D:(-\infty, \infty) \\
& R:(-\infty,-3]
\end{aligned}
$$

